ESTIMATES OF THE STABILITY DERIVATIVES OF A HELICOPTER FROM FLIGHT MEASUREMENTS

D.G. Gould, W.S. Hindson
National Aeronautical Establishment
National Research Council of Canada

Ottawa, Canada

ABSTRACT

A least-squares quasilinearization procedure has been used to
obtain estimates of the dominant lateral-directional and longitudinal
stability derivatives from in-flight response tests of a single rotor,
medium sized helicopter. The particular adaptation of the classical
least-squares method had two features, believed to be unique, to
reduce the influence on the resulting derivative estimates of pecu-
liarities of the model and of the particular circumstances of the
tests. ;

1. INTRODUCTION

There are many valid reasons for seeking improved methods
of estimating aerodynamic stability derivatives from in-flight meas-
urements of response to control inputs. There is a continuing
need for full scale measurements in order to make better theo-
retical estimates of stability derivatives and to assess the signifi-
cance of the aerodynamic forces on various elements of aircraft.
The handling qualities of a particular aircraft are of general in-
terest only if they are accompanied by good estimates of response
parameters. A knowledge of the stability derivatives leading to
response to turbulence is necessary to properly estimate structural
design loads and in the design of systems to improve ride qualities.
The design of autopilots and aided or automatic landing systems
requires a good knowledge of the response to both control inputs
and turbulence.

The work reported upon herein came about primarily because
of a need for a knowledge of the values of the aerodynamic sta-
bility derivatives of the Bell 205 helicopter which has been adapted
by the Flight Research Laboratory of the National Research
Council of Canada to an in-flight V/STOL aircraft simulator
(Ref. 1). The least-squares quasilinearization procedure was the
basis of the method used.

The direct implementation of least-squares mathematical
techniques to a particular response test leads to parameter esti-
mates that minimize the square of the differences between meas-
ured responses and those computed from a model of the aircraft.
The resulting parameter estimates reflect any peculiar circum-
stances or features of the mathematical model and the particular
test analysed. The concern of the engineer, however, is to extract
aerodynamic stability derivatives that are, to the maximum extent
possible, independent of the peculiarities of the test and analysis so
that the results may be used to predict the response in more gen-
eral circumstances.

The adaptation of the least-squares quasilinearization theory
used has two features, believed to be unique, to reduce the in-
fluence on the resulting stability derivative estimates of pecu-
liarities of the aircraft mathematical model and the circumstances
of the tests. The theoretical development of the procedures is
given first followed by examples of the implementation of these
procedures to in-flight tests with the Bell 205 helicopter.
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2. STABILITY DERIVATIVE ESTIMATE METHOD

2.1 Least-Squares Quasilinearization

The literature is profuse, almost to the point of confusion,
with parameter identification techniques referred to by different
names which, if not exactly equivalent, are at least more closely
a result of the same fundamental classical theory of least squares
(Ref. 2). The essential elements of the least-squares, quasilineariza-
tion procedure are reviewed briefly below.

Consider the linear or non-linear system modelled by the
equation set

F(X;, U, A\) = 0 (2.1.1)

whose solution is X;(Uj, A ), where the only constraint imposed is
that the column parameter vector A, be constant over the time
period of interest. In this representation, U; is a known system
vector forcing function and X; is the column state vector describing
the response of the system.

To the first order, the change in system response, X;, due to
a small change in the parameter vector, AX, is

Xi(Up, Mg + AN) =

AX(Uj, )

XU M)+ R

- AN (2.1.2)

The corresponding value of the cost function (the integral of the
square of the difference between observed and modelled states) is

¢ 3X; (Uj, Ay) 3
d=7 Yi—‘Xi(Uj,Kk) Cx T + AN
o k
aXi(Uj, Ag)
Wi Yi—Xi(Uj,Ak) x5 T A)\k dt

(2.1.3)

where Y; is the column vector of observed states and W, is a
weighting matrix reflecting the relative accuracy in measurement



of the state variables. It may also reflect the relative importance
assigned to the observed state variables. With the assumption

od
that an extremum in J has been reached, then —— = 0 yields

3N,

a recursive relationship for successive changes in the parameter
vector in order to minimize the cost function:

B [axj(uj,xk)]T [axi(Uj,xk)]
l—] w|———|iat
: N, N

F( X (U M0 | T
M| ™ [Yi—xi(Uj,xk)] at

DA =

(2.1.4)

It should be noted, although it is not the case of present in-
terest, that if the parameter sensitivity functions,

any

are independent of A, Equation 2.1.2 is exact, Equation 2.1.4 is
an explicit expression, and iterative solutions are not required.
In the present analysis, since 2.1.1 is a set of first order differential
equations (linear or non-linear) the sensitivity functions are de-
pendent on A, and iterative solutions are necessary.

The procedure outlined above bears noticeable similarity to
earlier gradient methods in which each parameter was perturbed
by a prescribed amount and the J associated with each perturba-
tion determined to give an approximate value of

A
N, AN

Difficulties were often encountered with judging the perturbation
magnitudes and sometimes convergence was dependent on this
choice. With the advent of modern computing techniques the
sensitivity functions are calculated d1rectly from differentiation
of Equation 2.1.1:

oF(X;, Uj, Ay)

_— = (2.1.5)
Oy

and if the model contains derivatives with respect to some other
independent variable such as time, it is assumed that orders of
differentiation can be reversed, so that

> [dX
Ny \dt

= (2.1.6)
T at axk

In the event that fairly reliable estimates of some parameters
are known, then it is possible to control the amount of departure
from these first estimiates during the course of the iterations
through an additional term in the cost function (Ref. 3).

P =N 17 D Dy — A ] (2.1.7)

With this additional term in the cost function, the recursive rela-
tionship of 2.1.4 for A\, now becomes
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(2.1.8)

The vector D, in the above expressions is usually referred to as the
a priori weight vector in that it enables the analyst to make intel-
ligent use of information with respect to the parameters from
additional sources. For example, in response tests with conven-
tional aircraft it is usually possible to estimate from aerodynamic
theory the value of the parameter Z, to good accuracy and an
appropriate a priori weight for that parameter will keep its value
within the bounds prescribed.

It is frequently the case when the number of parameters to be
estimated is large that the inverted matrix in Equation 2.1.4 is
poorly conditioned because of approximate linear relationships
among the state variables or their time derivatives and the param-
eter sensitivity functions. This problem can be alleviated but
often not eliminated by a careful choice of control inputs (the
system vector forcing function). It may be seen from expression
2.1.8 that the a priori weight vector makes the sensitivity matrix
better conditioned in that terms are added to the diagonal ele-
ments. Thus, if reliable a priori information is available, the addi-
tion of the a priori weight term in the cost function can be of
considerable benefit in preventing divergent solutions.

2.2 Algebraic Constraints Among the Stability Derivatives

The response in the longitudinal plane of a helicopter may
usually be modelled to within a reasonable accuracy by the fol-
lowing set of first order linear differential equations

U = XU+ X, U+X, W+ X, W+ XeQ+ (Xg — W,)Q —gb

+ Xécéc + Xﬁcac + Xéeée + Xﬁeae

W= Z,U+Z,U+Z,W+Z,W+Z5Q+ (Zg + Ug)Q

+ Zécéc + Zﬁcac + Zéese + Zseae

Q = MyU+M,U+M;W+M,W+MyQ+MQ

F Mécac 4 MBCSC ¥ Méeée -, M5e5e

(2.2.1)

If the U, W, Q and @ response variables are taken as the state vector
Xi(i=1,2 3, 4), the 5, 5., 6, and §, control input variables as
the vector forcing functlon UJ(j =1, 2 3, 4) and the stability de-
rivatives X;, X, —, My as the parameter vector A, (k=1,2, —,
30), the least squares quasllmea.nzatxon procedure outlined in
the foregoing paragraphs can be used to obtain estimates of the 30
stability derivatives. In fact, it would be very unlikely that con-



vergent solutions could be obtained because of the poorly condi-
tioned sensitivity function matrix and, even in the event solutions
were obtained, many of the stability derivative estimates would be
physically unrealistic and hence of little value to the engineer.

The linear model assumed for the foi‘mulgtion of the Equa-
tion Set 2.2.1 is approximate and while the response associated
with neglected non-linear terms may be small, the change in de-
rivative estimates that comes about in an attempt to make the
linear model give the same response as the exact model, may be
large. This effect is related to the magnitude of the response
allied with neglected terms for the particular test analysed and is
likely to be quite different depending upon the characteristics of
the control input. Furthermore, during the time of a particular
test, there may be small atmospheric inputs present which are
unknown and not allowed for in the model. These also, even if
the response associated with them is small, have a significant in-
fluence on the parameter estimates.

The use of an ¢ priori weight vector in the manner described
in Section 2.1 is a useful and powerful aid for ensuring that re-
sulting parameter estimates are not strongly influenced by pecu-
liarities associated with a particular set of test data. In order to
use the method, however, it is necessary to know the confidence
associated with each of the initial parameter estimates. Certain
parameters such as Z,, can be predicted with confidence for con-
ventional fixed-wing aircraft but if the aircraft is a helicopter or
other V/STOL aircraft the complexity resulting from interfering
aircraft components is usually such that theoretical estimates are
uncertain and adequate wind tunnel tests are not normally
available.

A procedure adopted for the results given in this paper, and
in more detail in References 4 and 5, expresses the stability
derivatives in the Equation Set 2.2.1 in terms of the aerodynamic
forces acting on the major components of the helicopter, moment
arms and inertial parameters. For example, the total derivatives
X,, and Z, are broken into elements associated with the major
helicopter components as follows:

Xy = Xymr t Xwrr ¥ Zwrr * Xwrus

Zy = (I—erg —€pp)lymr * Zwtr * Zwrt * Zwrus

(2.2.2)

where the subscripts MR, TR, FT and FUS refer to the main rotor,
tail rotor, fixed tail and fuselage respectively. The terms erp and
€pp represent down-wash factors at the tail rotor and fixed tail
resulting when the Z force on the main rotor is changed. The cor-
responding pitching moment derivative, M, is

m
M, = Iy_ [_hMRXWMR +(err¥rR + €rTRFT)ZWMR
-

— 2R Zwrr — WTZwET * QFUSZWFUS]
(2.2.3)

where m is the helicopter mass, I,, is the pitching moment of
inertia, and hy g , 21r , %e 1, Lpys represent the moment arms from
the reference axes to the effective aerodynamic centres of the
main rotor, tail rotor, fixed tail and fuselage, respectively.

Similar expressions to those of 2.2.2 and 2.2.3 were developed
for each of the stability derivatives of the Equation Set 2.2.1 in
terms of new parameters such as those in the above expressions.
Thirty-two new parameters, designated P,, were used in the ex-
pressions for the thirty stability derivatives, designated R, . The
algebraic constraints provided by these expressions make it such
that a change in one parameter Py, say Xy g, not only changes

X, but also changes M, . Furthermore, most of these new param-
eters (hy g, &g, 8 - etc.) could be estimated a priori and the
confidence in the estimates established for use in setting the ele-
ments of an e priori weight vector.

The sensitivity functions with respect to the original stability
derivatives,

9X;

1

R,

were calculated from the sets of sensitivity equations obtained by
taking derivatives of the Equation Set 2.2.1 with respect to the
parameters R, appearing in these equations. The partial deriv-
atives 4

R,
3P,

expressing the sensitivity of each of the stability derivatives to the
parameters P,, were obtained from the expressions such as 2.2.2
and 2.2.3 and the sensitivity functions with respect to the new
set of parameters P, calculated from

X 30 OR, 09X
o,

b
m=1 9P, R

(2.2.4)

m

Algebraic complexity is introduced using this procedure but it
has the very significant advantage of providing constraints be-
tween variations in the different parameters. Because the problem
is formulated in terms of parameters more fundamental than are
the stability derivatives, it is easier to establish realistic levels of
confidence in the initial estimates and assign an a priori weight
vector.

2.3 Conglomerate Analysis of Several Similar Tests

If small inputs from atmospheric unsteadiness are present
during a particular test the Equation Set 2.1.1 used to model the
system properly includes an additional input vector, ., and an
additional parameter vector, .. If the model equations are a set of
linear differential equations, as in the present case, the total state
vector describing the system response, XTi, can be written as the

superposition of the responses resulting from the control input
vector, Uj, and the atmospheric input vector, £ ; namely;

X Uy, M2, B)) = X(Uj, &) + XAi(Qn,BS)
(2.3.1)

The recursive relationship for successive changes in the
parameter vector now becomes

[ex " 9x%;
ANy = on — | {l=—] W] |idt

] o
[ox]T

W, X, | at
i gy = M

(2.3.2)

where the A\, is the change in the parameter vector in the absence
of atmospheric inputs given by Equation 2.1.4 (Equation 2.1.8 if
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a priori weight is used). The other term in Equation 2.3.2 there-
fore represents a bias that may result in the parameter vector
caused by atmospheric inputs.

If the dimension of the cost function is extended to include
N independent tests, where it is expected that the parameter vector
should be the same in each of the included tests, then

By =3 o fhhig _ j (2.3.3)

and the recursive relationship becomes

ax™ "
N m i
-1 (n) (n) (n)
AN, = [A T W [Y. —-X ] dt
ST - AN, i i i
T
= taT? g I‘" aXi(n) w™ x® b g
n=1 o a)\k i Ai
(n)|T
$apy o pir] BFF = w™ x™ g
kN n=1a || ON, bOTA
(2.3.4)
where
T
x| |ax™ ax™
. (my |20 dt
[A] = | =
n=1 o || 9, A\,
(2.3.5)

The first term A)\kN is the parameter vector estimate in the absence

of atmospheric unsteadiness while the second term represents the
bias in the estimates resulting from these unknown small inputs.

The probability of atmospheric inputs being the same, or more
precisely of the correlation between the sensitivity function vector
and the response function vector to atmospheric disturbances being
the same, among a number of tests conducted from the same refer-
ence condition, is very small. Consequently the magnitude of the
bias term in Equation 2.3.4 is likely to be reduced relative to that
when only one test is included as in Equation 2.3.2. If N is large
the resulting bias will have a high probability of being negligible
but from the point of view of the practical engineer, the confidence
in the estimates will be considerably enhanced if N is 3 or 4.

It should be noted that this procedure is not likely to remove
bias in the estimates that result from inadequacies of the model in
predicting response to the known control inputs since the correla-
tion of the unmodelled response (corresponding to the term

0X;

X,. in 2.3.4) with 5\— may be the same in successive tests, partic-
1

L k
ularly if the known inputs are similar in each of the tests. The
modelling procedure outlined in Section 2.2, which is based on an
appreciation of the aerodynamic peculiarities of the unknown sys-
tem, hopefully reduces concern in this area.

This procedure of treating a conglomerate of independent
runs in the cost function with a common parameter vector is
similar in concept to a procedure sometimes known as the Bayesian
maximum likelihood estimator (Ref. 6). The formal derivation of
the maximum likelihood estimator comes from a statistical ap-
proach to the problem and strictly speaking requires that the
unknown inputs, regarded as noise, are random with a Gaussian
distribution. The more usual approach is to determine derivative
estimates from special tests conducted in approximately turbulence
free conditions. The unknown atmospheric inputs that may be
present, and certainly those that cause the greatest problem, are
small amplitude low frequency disturbances having a period of the
same order as the record length and it is not possible to describe
these in a meaningful statistical manner.

3. EXAMPLES OF APPLICATION TO FLIGHT TESTS
WITH THE BELL 205 HELICOPTER

The procedures of Section 2 have been used to obtain esti-
mates of both the lateral-directional and longitudinal stability
derivatives of the Bell 205 helicopter (Fig. 1). Details of the tests
and analyses along with complete results are given in References 4
and 5. Twenty-one lateral-directional derivatives were obtained
using nineteen fundamental parameters of the nature of those
designated by P, in Section 2.2, while thirty longitudinal deriva-
tives were found from thirty-two parameters. The observed re-
sponses used in the cost function were roll rate, yaw rate and
lateral velocity for the lateral-directional response tests and
longitudinal velocity, normal velocity, pitch rate and normal ac-
celeration for the longitudinal tests.

The estimates obtained for the 10 dominant lateral-directional
derivatives are given in Table 1 for three separate tests. The values
found when each was treated separately all appear reasonable and
the computed or modelled responses fit the measured responses
quite well as shown for one of the tests in Figure 3a). One is able
to conclude from these results that the procedure outlined in
Section 2.2, which set up algebraic constraints among the elements
of the parameter vector and which enabled the use of an a priori
weight vector, was successful in that convergent solutions were
obtained and the estimates appear to be physically realistic. On
the other hand, each of the three tests were performed from the
same reference condition, so that hopefully the derivative values
would have been closely the same from the separate tests. There
were, in fact, considerable differences particularly in the dominant
roll damping derivative e‘Ftimates.

i

!

Included in Table 1 are the single set of derivative estimates
obtained by treating these three separate tests as a conglomerate
in the cost function after the fashion of Section 2.3. The root
mean square error between the modelled and measured responses
for each run using the derivative values from each test analysed
separately are compared with those obtained using the derivative
estimates from the conglomerate analysis in Figure 2. The re-
sponse time histories for one of the runs are also included in
Figure 3b) using the derivatives from the conglomerate analysis
for comparison with the responses using the parameter estimates
from that test alone. These two Figures show that the common
set of derivatives from the conglomerate anulysis produced model
responses for each of the three different tests nearly as well as
those produced from the separate results obtained for each test.
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FIGURE 1 BELL 205 HELICOPTER
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FIGURE 2 COMPARISON OF ROOT MEAN SQUARE
DIFFERENCES, LATERAL-DIRECTIONAL RESPONSE,
70 KNTS

TABLE 1 ESTIMATED VALUES OF

LATERAL-DIRECTIONAL ROTARY DERIVATIVES, 70 KNTS

Values Obtained from Values Ob-
Analysis of Separate Tests tained from
Congl. of
1 9 3 Tests
L, —0.820 —0.523 —0.922 —0.806
N, —0.048 —0.022 —0.069 —0.037
Lp 0.122 0.105 0.200 0.174
Ny —1.393 —1.029 —1.254 —1.303
Ly —0.0164 —0.0137 —0.0147 —0.0147
Ny, 0.0189 0.0192 0.0146 0.0177
L 0.183 0.178 0.191 0.184
a
Ny 0.024 0.024 0.030 0.025
Lér —0.254 —0.218 —0.259 —0.260
N5r 0.561 0.467 0.431 0.493
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Estimates for fifteen of the most significant longitudinal
response derivatives are given in Table 2 for four different tests.
As in the case of the lateral-directional response experiments
there are considerable differences among the estimates for a
particular derivative for the different tests in spite of the fact that
the reference flight condition was the same for each.

Also included in Table 2 are the estimates resulting from
including tests 4 and 5 together, tests 6 and 7 together, tests 4,
5 and 6 together and finally tests 4, 5, 6 and 7 together as con-
glomerates. The root mean square error between the four model-
led and measured response variables (Q, a,, U and W) are com-
pared in Figure 4 for each of the cases of Table 2. The differences
between estimates for runs 4 and 5 analyzed as a conglomerate
and runs 6 and 7 analysed as a conglomerate are considerably less
than was the variability when each run was taken separately, with
the exception of the Zsc derivative. The estimated values ob-

tained by taking tests 4, 5 and 6 together differ somewhat from
those with only two tests taken together but the difference is not
large. The estimated derivative values changed a small amount
from those obtained with three tests in a conglomerate when all
four were analysed together.

The comparison of the root mean square errors between the
modelled and fitted responses for each of the cases of Table 2
(Fig. 4) show that although the errors generally increase somewhat
for each test when the common stability derivatives from the con-
glomerate analysis are used, the increase is not large. In fact for
test 4, the errors between the modelled and measured U and W
responses were smaller when the common derivatives were used than
when the derivatives obtained for this test separately were used.
The weighted error, which is not shown, did of course increase.

RMSD Q, rod/sec
RMSD 0,,f1/5ec?

Es! obimined trom 74 Est obtained trom
single test congi. of 2 tes!s

] Est obtoined trom Est abtained tfrom
| congl of 3 tests congl of 4 lests

RMSD W, 11/ gec

RMSD U, ft/sec

Test 4 Test 5 Test 6 Test 7 Tes1 4 Test § Test 6 Test 7

FIGURE 4 COMPARISON OF ROOT MEAN SQUARE
DIFFERENCES, LONGITUDINAL RESPONSE, 70 KNTS

In Figure b, the errors are given for tests 4 and 5 for the
responses of test 4 modelled with the derivatives from test 5 and
vice versa. It may be seen that the errors in this case are greater
than those obtained using the common derivatives with the ex-
ception of the W and @ responses of test 4.

TABLE 2 ESTIMATED VALUES OF LONGITUDINAL DERIVATIVES — 70 KNTS

Values Obtained From Values Obtained From Algebraic
Analysis of Separate Tests Analysis of Conglomerate of Tests Average
of Tests
4 5 6 7 4&5 6 &7 4,5&6 4,5,6&7 4,5,6,7
). —0.0220 —0.0305 —0.0235 —0.0584 —0.0317 —0.0235 —0.0265 —0.0334 —0.0336
Z, —0.0534 —0.0427 —0.0458 —0.0600 —0.0518 —0.0240 —0.0479 —0.0288 —0.0505
M, 0.0009 0.0020 0.0011 0.0062 0.0021 0.0006 0.0015 0.0023 0.0025
X —0.0351 —0.0495 —0.0342 —0.0640 —0.0065 —0.0408 —0.0207 —0.0432 —0.0457
Zy, —0.4597 —0.5559 —0.7675 —0.4854 —0.5809 —0.5196 —0.6321 —0.5713 —0.5671
M,, —0.0043 —0.0085 —0.0041 —0.0215 —0.0082 —0.0134 —0.0089 —0.0091 —0.0096
X0 1.417 1.478 1.499 1.436 1.547 1.500 1.571 1.461 1.457
Zg —40.24 —40.58 —40.32 —41.08 —40.11 —40.65 —40.21 —40.43 —40.56
M, —0.8329 —0.3566 —0.4264 —0.1398 —0.6900 —0.4204 —0.6852 —0.5993 —0.4389
Xsc 2.94 2.55 0.56 0.53 1.95 0.46 1.63 1.11 1.64
ZBc —19.55 —26.20 —28.25 —16.03 —23.87 —14.89 —23.09 19,72 —21.28
Msc —0.150 —0.125 0.153 —0.011 —0.174 —0.013 —0.154 —0.103 —0.033
X'Se —b.02 —5.02 —5.04 —4.99 —5.05 —5.06 —5.08 —b.06 —5.02
Zac —19.56 —19.88 —19.83 —19.68 —20.05 —19.81 —20.17 —20.08 —19.73
M'Se 0.835 0.772 0.832 0.670 0.731 0.713 0.732 0.706 0.706

436



4 3.0‘ o B
¥’ ; Lo
H ' u w
: T 1.
3 (s =20
8 | e e
, L Y
o 2
| i 1.0
= ‘e 5 37
% ' .
= V2 X
@ © 4N o
Test4 Test$§ Test 4 Test5 Test4 Test 5
Est. obtained from B Est obtained fram Est obtained from
congl of 4 tests single test 5 used in algebragic average

model af 4 8 vice versa of 4 tests

FIGURE 5 COMPARISON OF ROOT MEAN SQUARE
DIFFERENCES, LONGITUDINAL RESPONSE, 70 KNTS

Also included in Figure 5 are the errors found for tests 4 and
5 using derivative values that result from taking the simple algebraic
average of the estimates from the four tests taken individually.
These errors are larger than those obtained using the common
derivatives from the conglomerate analysis except for the @ and W
responses of test 5. The conglomerate analysis is a more formally
correct procedure to obtain the best common estimates for a
number of tests from the same reference condition than is the
simple algebraic average. These results show that the root mean
square errors are slightly reduced when the more formally correct
procedure is used.

It is difficult to make an assessment of the accuracy of the
final stability derivative estimates. There was considerable varia-
tion among the stability derivative values obtained from individual
tests. The most likely causes of these differences were the pres-
ence of unknown, probably low frequency atmospheric inputs,
and an indeterminateness between two or more derivatives. To the
extent that the conglomerate analysis was successful in removing
these problems, the greatest uncertainty in the estimated values at
a given reference flight speed is removed. Certainly the confidence
in being able to use these common derivatives for more general
responses is considerably enhanced.

As is indeed intended, the a priori weight vector used has
considerahle influence on the final derivative estimates. The
onus is placed on the engineer to make reasonable estimates of the
allowable variation in each parameter from the initial values to
arrive at the relative magnitude of the elements of the a priori
weight vector. The confidence that may be given to these estimates
of the allowable variation in each parameter is considerably im-
proved when the model is formulated in the manner of Section 2.2.

The resolution of the least-squares method for each set of
parameter estimates may be determined from the results of the
last two or three steps in the iteration process. The parameter
estimates oscillate in a coupled manner between successive
iteration steps with only very small oscillations in the value of J.
These variations are indicative of the resolution but not the ab-
solute accuracy of the method. Estimates of the resolution of the
method are given in References 4 and 5 and in all cases they are
small compared to the variations between derivative values ob-
tained from separate tests at the same reference flight condition.
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4. CONCLUSIONS

A least-squares quasilinearization procedure was used to ob-
tain estimates of twenty-one lateral-directional and thirty longitu-
dinal stability derivatives from in-flight response tests of the Bell
205 helicopter. The particular adaptation of the classical least-
squares method had two features, believed to be unique, to reduce
the influence on the resulting derivative estimates of peculiarities
of the mathematical model and the circumstances of the tests.

The first of these features consisted of the formulation of the
model in terms of the aerodynamic forces acting on the major com-
ponents of the helicopter, the moment arms from the reference
axes to the effective aerodynamic centres of these forces, and
inertia parameters. This formulation provided algebraic con-
straints among the stability derivatives in terms of these param-
eters, and made it possible to determine allowable variations in
the parameters and establish an a priori weight vector for inclu-
sion in the cost function. This procedure can increase signifi-
cantly the confidence that may be given to the final derivative
values, but the onus is placed on the engineering analyst to make
good estimates of allowable variations in the parameters so that
the final results are not unduly biased.

The second feature involved an increase in the dimension
of the cost function so that a number of independent tests from
the same reference flight condition could be taken as a con-
glomerate with a common parameter vector. This procedure is
capable of considerably reducing the influence on the derivative
estimates of small unknown atmospheric inputs that may be
present during a particular series of tests. It also provides a
formally correct procedure for determining the best average
parameter estimates from independent tests at the same reference
flight condition.
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